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ABSTRACT: Metabolic flux analysis (MFA) has so far been
restricted to lumped networks lacking many important
pathways, partly due to the difficulty in automatically gen-
erating isotope mapping matrices for genome-scale meta-
bolic networks. Here we introduce a procedure that uses a
compound matching algorithm based on the graph theore-
tical concept of pattern recognition along with relevant
reaction information to automatically generate genome-
scale atom mappings which trace the path of atoms from
reactants to products for every reaction. The procedure is
applied to the iAF1260 metabolic reconstruction of Escher-
ichia coli yielding the genome-scale isotope mapping model
imPR90068. This model maps 90,068 non-hydrogen atoms
that span all 2,077 reactions present in iAF1260 (previous
largest mapping model included 238 reactions). The
expanded scope of the isotope mapping model allows the
complete tracking of labeled atoms through pathways such
as cofactor and prosthetic group biosynthesis and histidine
metabolism. An EMU representation of imPR90068 is also
constructed and made available.
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Introduction

Metabolic flux analysis (MFA) (Vallino and
Stephanopoulos, 1993) has emerged as a critical tool to
understand the physiological state of a cell (Bailey, 1991;
Nielsen, 2003; Stephanopoulos and Vallino, 1991). Using
isotopically labeled substrates with different labeling
patterns, experimental techniques such as NMR (Adelbert
et al., 1998; Kelleher, 2001) and GC-MS (Wittmann and

Heinzle, 2002) are used to measure the amounts of different
isotope forms of select metabolites. The fluxes in a metabolic
network are directly coupled to the relative isotopic
abundances of different metabolites through a system of
nonlinear algebraic equations (Schmidt et al., 1999). Details
of the same can be found in literature in a recent review
(Kim et al., 2008). Briefly, these nonlinear equations are
constructed using mapping matrices that trace the path of
each atom and subsequently each isotopomer (isotope
isomer) in a metabolic reaction. This information was
initially represented using atom mapping matrices (AMM)
(Zupke and Stephanopoulos, 1994) that track the transfer of
carbon atoms from reactants to products. This concept was
subsequently generalized in the form of isotopomer
mapping matrices (IMM) (Schmidt et al., 1997) that
enumerate all possible product isotopomers that can be
created from each reactant isotopomer.

Two separate computational challenges arise during flux
elucidation based on MFA. The first challenge involves the
automated generation of isotope mapping matrices for
genome-scale metabolic reconstructions while the second
involves the efficient solution of the corresponding system of
nonlinear equations for the unknown fluxes while account-
ing for measurement error. The challenge of flux elucidation
has been previously addressed using a variety of computa-
tional techniques including the cumomer concept (Wiechert
et al., 1999), theoretical bondomer (van Winden et al.,
2002), the elementary metabolite units (EMU) framework
(Antoniewicz et al., 2007a), FluxCalc (Suthers et al., 2007),
and handling of measurement errors (Antoniewicz et al.,
2006). However, the application of these methods has been
restricted to models that were at least an order of magnitude
smaller than genome-scale reconstructions as a consequence
of the aforementioned challenges. Typical isotope mapping
models contain 25–50 reactions (Kim et al., 2008), 76
reactions (Antoniewicz et al., 2007b), or 238 reactions
(Suthers et al., 2007), which is the largest to-date model
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(developed in our group). A key shortcoming of using
lumped metabolic abstractions to perform flux elucidation
is that they may erroneously lead to the conclusion that the
available NMR, GC/MS, or MS/MS data is sufficient for
unique flux elucidation (Chang et al., 2008). The inferred
metabolic fluxes may then inherently reflect the biases/
assumptions built-in during the lumped metabolic map
creation step. In addition, utilizing a genome-scale model
for simulation/strain design purposes and a separate lumped
metabolic model for flux elucidation could complicate the
seamless integration/transfer of results.

Motivated by these shortcomings, here we introduce a
genome-scale E. coli isotope mapping model. This challenge
is formidable, as it requires a detailed account of atom
transitions for all 90,068 atoms in 2,077 reactions present in
the metabolic reconstruction, iAF1260 (Feist et al., 2007).
Atommappings are obtained for each reaction by tracing the
origin and destination of atoms through each individual
reaction in the metabolic network. Tracing atoms from
reactants to products requires the ability to topologically
superimpose the structures of reactant and product
molecules. This involves the identification of all ‘‘common’’
substructures between the two molecules. Thus, in addition
to tracing isotopically labeled carbon atoms (typically the
choice in MFA experiments) the path of O, N, P, S atoms as
well as of metal/non-metal ions are also traced as part of the
algorithm. Even though the immediate utility of imPR90068
is in the carbon mappings, the model is poised to take
advantage of advances in labeling choices and detection. For
instance, 15N isotopes have been recently utilized in
techniques such as kinetic flux profiling (KFP) (Yuan
et al., 2006, 2008) and non-targeted tracer fate detection
(NFTD) (Hiller et al., 2010) to elucidate metabolic fluxes.
NFTD can also be used with other stable isotopes like 33S or
18O (Hiller et al., 2010).

Techniques relying on pattern recognition concepts from
graph theory, which have been extensively employed in
cheminformatics (Gillet et al., 1998; Raymond and Willett,
2002; Willett, 1995), can be used to topologically align and
compare a reactant with a product molecule. These
techniques essentially apply two mathematical operations
on the molecular graphs of the two compounds to be
aligned. The first mathematical operation combines the two
molecular graphs into a single association graph (AG). The
second operation identifies the largest clique (i.e., connected
graph) within the AG. The maximum common subgraph
(MCS) approach (Hattori et al., 2003b), formulates the
edges of the AG based on the bond connectivity but without
considering the bond-type data (single, double bond, etc.) of
the two compounds involved. The NP-complete nature of
all graph isomorphism problems (Raymond and Willett,
2002) adds to the difficulty of generating genome-scale atom
mappings. Furthermore, several symmetry considerations
about metabolites need to be addressed before the final
reaction atom mappings are formulated. These include
equivalent oxygen atoms (such as those present in carboxyl
and phosphate groups) and rotationally symmetric

molecules (e.g., succinate), which result in scrambling of
isotope labeling. Additionally metabolites containing a
prochiral carbon center (e.g., citrate) or metabolites with a
center of inversion but lacking a rotational axis of symmetry
restrict the mapping degeneracy.

So far, graph isomorphism techniques have only been
used to contrast pairs of compounds (Hattori et al., 2003a)
or trace just carbon atoms (Mu et al., 2007) within the
KEGG/LIGAND database (Goto et al., 1998, 2002). In
addition, the atom transitions listed in KEGG are inadequate
for flux analysis using MFA since alternative atom
transitions are not explicitly listed when symmetric
molecular sub-structures or symmetric molecules are
present in the reaction. Alternatively, compound matching
based on an algorithm that tallies the connectivity (i.e.,
number of atoms connected to a given atom) of atoms in the
compared compounds (Wipke and Dyott, 1974), has been
used to trace atoms across reactions (Arita, 2003; Flower,
1998). However, this procedure requires the manual
reordering of metabolites in reactions and has scaling
limitations (i.e., it cannot detect rings of size greater than ten
such as heme) (Arita, 2004).

We chose to overcome these limitations and generate
mappings for the latest metabolic reconstruction of E. coli
(Feist et al., 2007) by first representing molecular chemical
structures as graphs defined by a set of vertices (the atoms)
connected by edges (the bonds). Subsequently, the MCS
method (Hattori et al., 2003a) coupled with a modified
branch and bound algorithm for clique finding (Coen and
Joep, 1973) is customized to automatically generate genome
scale atom mappings. Finally the mappings obtained for
each reaction are pruned to retain only the biochemically
relevant ones.

Results

The proposed procedure used to generate imPR90068,
requires as input the stoichiometry of all reactions present in
the metabolic network and data encoding the chemical
structure of all metabolites involved in the network in the
form of MDLmol files. MDL is a file format created byMDL
Information Systems containing atom and bond informa-
tion of the participating compounds. The method described
can be applied to any genome-scale metabolic model and is
amenable to the straightforward inclusion of additional
reactions not present in the original organismmodels as well
as user-supplied metabolite structures. During the auto-
mated procedure, a library of atom mappings and recurring
motifs is generated which can be leveraged for future isotope
mapping efforts. The four steps of the procedure (see Fig. 1)
are described in detail in the Methods section (see
Supplementary Appendix A). The end result of the atom
mapping process is the isotope mapping model imPR90068
for the E. coli strain K-12 that spans 1,039 metabolites, 2,077
reactions and contains a total of 1.37� 10157 isotopomers
(with 8.34� 1093 13C isotopomers). The atom mappings

2 Biotechnology and Bioengineering, Vol. xxx, No. xxx, 2011



Figure 1. Steps 1-4 are applied to a general reaction A ¼> C. The molecular structures of A and C are shown in Step 4. Grey circles and squares indicate carbon atoms (C)
and white denote oxygen (O) atoms. (Step 2) The atoms of reactant graph are shown as circles and that of product graph are shown as squares. (Step 3) The nodes of the AG are
pairs of nodes from reactant and product graphs, and grey lines are the edges of the AG [see Supplementary Appendix A for details]. The two cliques identified are the largest set of
vertices that are completely connected to each other in the AG and are shown as thick black lines. (Step 4) The atom mappings are shown as lines (atom traces) between reactant
and product molecular structures. From the visual representation we see that two alternate mappings exist due to symmetry of A and C molecules.
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were generated for each reaction separately using the Lion-
XJ computational cluster of the High Performance
Computing Group consisting of Dell PowerEdge 1950
servers with dual 3.0 GHz Intel Xeon E5450 Quad-Core
Processors and 32GB of ECC RAM. The identification of all
possible atom mappings for reactions containing fewer than
25 reactant atoms took between 10 and 25min of CPU time
(Hattori et al., 2003b) report average running times of
approximately 11 h per comparison when comparing two
random chosen compounds from the KEGG/LIGAND
database. Reactions with more than 25 atoms required
between 4 and 40 h to run. The average CPU time taken was
approximately 25 h per reaction. Because the analysis of each
reaction can proceed independently of others, we typically
had in excess of 300 running simultaneously. Atom
mappings were generated for every reaction in the network
tracing all non-hydrogen elements including C, N, O, P, S,
and metal/non-metal ions. The EMU representation
(Antoniewicz et al., 2007a) was implemented using
Python modules. Briefly, given a set of mass isotopomer
measurements and a set of source metabolites, this
implementation calculates network fluxes through an
EMU representation. The details of the procedure used to
identify all EMU species and variables are outlined in
Suthers et al. (2010).

Reactant to Product Atom Mapping Examples

The metabolic network iAF1260 contains 304 exchange
reactions, 690 transport reactions and 1,387 metabolic
reactions (Feist et al., 2007). As many as 653 reactions
contained compounds with at least one kind of symmetry
(i.e., equivalent resonance atoms, prochiral centers, rota-
tional axis, or center of inversion). For 91 of these reactions
the atommapping generatedwere refined due to the structural
geometry of the participating metabolites. For example,
reactions containing prochiral metabolites (i.e., including C
atoms bonded to two stereo-heterotopic groups) react in vivo
stereo-specifically. Therefore, their atom mappings were
pruned to only biochemically feasible ones.

The atom mappings for the 690 transport reactions,
which account for 12,325 of the traced atoms, were
generated in a straightforward manner as the molecular
graphs remain invariant upon transport. For example, the
atom mappings for the arginine/agmatine antiport reaction,
which is a reversible inner membrane transport reaction, are
retained as arginine and agmatine as they simply transported
from the cytosol to the periplasmic space without any bond
modifications:

ARGAGMt7pp agm½c� þ arg-L½p� , agm½p� þ arg-L½c�
The atom mappings for the remaining 1,387 metabolic

reactions, containing 77,619 of the mapped atoms, were
created by iteratively applying for every reaction the
proposed workflow (see Steps 1–4 in Fig. 1). During this
process, five frequently occurring reaction motifs were

automatically identified and stored in a database (see
Table I). The atom mappings of these five reaction motifs,
which occur in 424 different reactions, were simply copied
from the reaction motif library (Table I).

The following examples detail the challenges faced during
the atom mapping procedure (Fig. 1) and illustrate the
handling of large molecules and various symmetries that
produce/restrict isotopic scrambling. The first example is
citrate oxaloacetate-lyase reaction, abbreviated as CITL in
iAF1260:

CITL : Citrate , Acetate þ Oxaloacetate

The molecular information of citrate, acetate, and
oxaloacetate is extracted from the corresponding
MDLmol files. The reactant and product graphs constructed
from this molecular information yield an association graph
with 85 nodes (each node of an AG consists of a pair of
atoms) containing 16 cliques corresponding to all alter-
native atom mappings (see Supplementary Appendix A for
details). The chemical structures of the mapped metabolites
and their possible alternative mappings are shown dia-
grammatically in Figure 2. The stereo-specific enzyme that
catalyzes the citrate oxaloacetate-lyase (or citrate lyase)
reaction in E. coli is known to produce acetate from the pro-
S arm of the prochiral citrate molecule (Dagley and Dawes
1955). Therefore the structurally feasible but biochemically
irrelevant formation of acetate from the pro-R carbox-
ymethyl is ignored (Step 4). The equivalent oxygen atoms on
the carboxyl groups result in eight alternative mappings. The
set of mappings shown in Figure 2a are the required reaction
mapping of reaction CITL (Supplementary Information).

The presence of rotationally symmetric molecules causes
additional scrambling of isotopic labeling. This is illustrated
using the taurine dioxygenase reaction (see Fig. 3), which is
abbreviated as TAUDO in iAF1260:

TAUDO½c� : akgþ o2þ taur

! aacaldþ co2þ hþ so3þ succ

Due to the presence of the rotationally symmetric
succinate moiety, equivalent oxygen atoms on carbon
dioxide, O2, and sulfite group, 96 alternate mappings are
generated. These atom mappings, which trace 7 carbon, 1
nitrogen, 10 oxygen, and 1 sulfur atoms between 7
metabolites (Fig. 3), are stored as a reaction mapping
under the reaction name, TAUDO.

Table I. List of frequently occurring reaction motifs.

Reaction motif

# of occurrences

in iAF1260

# of atoms

mapped

atpþ h2o! adpþ hþ pi 162 32

atpþ h2o! ampþ hþ ppi 65 32

adpþ h2o! ampþ hþ pi 5 32

nadþ h$ nadh 110 44

nadpþ h$nadph 82 48
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Size Statistics and Mapping Degeneracy of imPR90068

The genome-scale mappingmodel imPR90068 generated for
the E. coli encodes the complete list of reactions in iAF1260
(Feist et al., 2007) as a library of 2,077 reaction mappings
(see supplementary information for the mapping files). Each
reaction mapping contains multiple atom mappings that
trace all reactant atoms to all product atoms in the respective
reaction. The model contains a total of 20,872 alternate
atommappings that trace the fate of 90,068 atoms through a
network of 2,077 reactions and 1,039 metabolites. These
atom mappings trace the path of C, O, N, P, S atoms as well
as Ag, As, Ca, Cd, Cl, Co, Cu, halogens, Fe, Hg, K, Mg, Mn,
Na, Ni, Se, W, Zn ions. Detailed information on atoms
traced is provided in Table II. Figure 4 depicts the COG
classifications of the reactions in imPR90068 and imPS1485
(Suthers et al., 2007) revealing a dramatic increase in the
number of reactions present. In addition to a sevenfold
change in the total number of reactions, over 800 new

metabolites are present with 45 new biomass components
accounting for lipids, cell wall components, nucleotide
synthesis, and tRNA species. The imPR90068 model can
accommodate as many as 174 different carbon sources
signifying different labeling opportunities.

The classification of all 1,387 metabolic reactions in
imPR90068 based on the number of alternative mappings
(per reaction) is shown in Table III (also see Supplementary
Figure). Among these, 734 reactions contain a single
mapping alternative implying that the atoms in these
reactions are uniquely mapped from reactants to products.
The majority of these 734 reactions with no mapping
degeneracy are isomerization, displacement or substitution
reactions typically containing less than three reacting
species. The remaining reaction mappings are degenerate
to various degrees and contain multiple alternative atom
transitions from reactants to products due to symmetry(ies)
present in the reaction operator (Table III). A general
downward trend is observed in the number of reactions with

Figure 2. Retaining biochemically valid atom mappings. a: The stereo-specific enzyme citrate oxaloacetate-lyase that catalyzes this reaction forms acetate from the pro S
carboxymethyl group of citrate. b: The structurally equivalent but biochemically infeasible alternative mapping generated during Step 3 is eliminated in Step 4. The equivalent
oxygen atoms are kept track to identify equivalent EMUs for predicting labeling distributions.
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Figure 3. Atom mappings of Taurine dioxygenase. The reaction taurine dioxygenase appears as shown in iAF1260 (top). All feasible atom mappings between reactant graph
and product graph are shown as a set of lines connecting reactant atoms to product atoms (bottom). Note that carbon atoms (1,2,5,8) in 2-oxoglutarate map to either carbon atoms
(12,13,16,17) in succinate or in reverse to (17,16,13,12). The mappings are explicitly listed in the corresponding atom mapping file of the reaction available as Supplementary
Information. Gray, red, blue, and yellow lines connect carbon, oxygen, nitrogen, and sulfur atoms, respectively. The product compounds have been rearranged in the product graph
for visual clarity. The reactant and product atoms have been sequentially numbered in accordance with the reaction representation in iAF1260 and the atom numberings are in
accordance with the numbering present in the corresponding MDL mol files of the compounds in the supplemental information of iAF1260.
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increasing reaction mapping degeneracy with 528, 256, 155
reactions containing respectively 2–8, 9–128, 129–1024
alternative mappings (Supplementary Figure). Spikes are
observed at 17–32 alternatives due to the presence of
phosphate groups (24 alternative mappings) and similarly at
257–512 due to the presence of diphosphate groups (288
alternative mappings).

Table III also identifies which atom type (or combination
of atoms) is responsible for the degeneracy in the mapping.
The individual reactions containing a modest number of
mappings (i.e., from two to eight) are primarily degenerate
either due to equivalent carbons or due to equivalent
oxygens and less likely due to the presence of both equivalent
carbons and oxygens (71% due to either only C or only O
and 22% due to both C and O). The reactions containing
equivalent O (either standalone or in combination with
other equivalent atoms such as C, N) are predominantly due
to oxygen atoms in the carboxyl groups. Degeneracy due to
equivalent C (or N) arise as a result of rotational symmetry
of the reacting species (e.g., succinate, D-mannitol,
fumarate). Furthermore, reaction mapping degeneracy
arising from both C and O scrambling are fairly ubiquitous
through the model. For example in reaction TAUDO (see
Fig. 3), reactant 2-oxoglutarate can be mapped to the
symmetric product succinate, in four possible ways. Two of
these mappings arise when carbon atoms (1,2,5,8) from 2-
oxoglutarate map to either carbons (12,13,16,17) or in
reverse (17,16,13,12) in succinate. The other two degenerate
mappings are due to resonance-stabilized oxygen atoms 9,10

Table II. Total number of most-prevalent atoms and their respective

isotopomers.

Atom type

Total # of

atoms traced

Total # of

isotopomers

Carbon 49,539 8.34� 1093

Oxygen 29,061 1.61� 1060

Phosphorous 3,280 1.00� 104

Nitrogen 2,386 2.58� 107

Sulfur 409 4.09� 103

Othersa 265 4.05� 103

Total 90,068 1.37� 10157

aIncludes Ag, As, Ca, Cd, Cl, Co, Cu, halogens, Fe, Hg, K, Mg, Mn, Na,
Ni, Se, W, Zn.

Figure 4. Classification of reactions according to respective clusters of orthologous groups (COGs). Dark grey bars are reactions present in imPS1485 while light grey bars
represent new reactions present in the genome-scale imPR90068.

Table III. Distribution of alternate atom mappings of reactions present in imPR90068.

Alternatives

(degeneracy)

Total # of

reactions

# of reactions with equivalent C, O, N, or P

C only O only N only C, O C, N O, N O, P C, O, N C, O, P

1 734

2 232 138 105 4 30 3 1 0

3–4 117 17 48 41 2 2 4 1

5–8 179 41 66 58 1 2 7 3

9–16 71 2 31 33 1 1 1 1 0

17–32 121 9 68 31 1 4 7

33–64 35 1 14 14 3 2

65–128 29 0 16 9 2 1 1

129–256 19 0 5 6 8 0 0

257–512 126 1 107 4 3 3 1

513–1,024 10 0 2 2 2 3 1

The breakdown of degenerate reactions with respect to equivalent carbon (C), oxygen (O), nitrogen (N), and phosphorous (P) atoms is also shown.
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in 2-oxoglutarate that can be mapped onto equivalent
oxygen atom pairs 14,15 or 18,19 in succinate.

Oxygen atoms are by far the most highly contributing to
alternate mappings (i.e., 44% of all degenerate reactions).
This is not surprising given the prevalence of phosphate,
sulfur, and carboxyl groups containing multiple equivalent
oxygen atoms. Often, multiple atoms (e.g., C, O, N, or P)
simultaneously contribute in the mapping degeneracy.
Phosphorous atoms accompanied by equivalent oxygen
atoms (due to the presence of resonating phosphate groups)
are involved in reactions with large numbers of mappings
(i.e., more than 64). There exist 10 reactions with number of
mappings in the range of 513–1,024. These reactions contain
four or more reacting molecules usually with multiple
symmetric metabolites and are involved in cofactor and
prosthetic group biosynthesis, murein recycling, and
nucleotide synthesis/salvage pathways. For example, in
the asparigine synthetase reaction ASNS2, six molecules
containing five reaction operators (two carboxyl groups and
three phosphate groups) bring the reaction mapping
degeneracy to 864 alternatives.

New Reactions/Metabolites in imPR90068

The introduced isotope mapping model imPR90068
contains mappings for reactions that were previously
lumped or completely absent from isotope mapping models
(even in imPS1485). These new additions include 68
reactions involved in the metabolism of 17 different amino
acids (all but Asparagine, Glutamine, and Glutamic acid), 65
reactions involved in central metabolism, 153 reactions in
nucleotide biosynthesis and salvage pathways, 225 reactions
in glycerophospholipid metabolism, 160 reactions in
cofactor and prosthetic group biosynthesis and 181
reactions in alternate carbon metabolism (see Fig. 4). The
inclusion of all biotransformations spanned by the genome-
scale model implies that alternate metabolic routes can now
fully be taken into account during flux elucidation using
MFA. For example, in imPR90068, the xylose isomerase
catalyzed reaction XYLI2 that reversibly isomerizes D-
glucose to D-fructose combined with the fructose transport
reaction FRUpts2pp which converts phosphoenolpyruvate
(PEP) to pyruvate during the transport of D-fructose, creates
a pathway from glucose to pyruvate alternate to glycolysis.
Other alternate glucose metabolism entries include amylo-
maltase (AMALT1-4), maltodextrin glucosidase (MLTG1-
5), and a- and b-galactosidase (GALS3, LACZ, LACZpp)
reactions. In addition, a growth on 174 different carbon
sources is possible using imPR90068 as opposed to only
glucose and a few amino acids using imPS1485. As many as
45 biomass components absent from imPS1485 are now part
of the model. These metabolites include cofactors (e.g.,
CoA), amino acids (e.g., His and Trp), riboflavin, murein,
and inorganic ions (e.g., Feþ 3). It is important to note that
new reactions in imPR90068 are not necessarily far away
from central metabolism. Even under aerobic glucose

growth conditions, as many as 35 new reactions are added
to central metabolism that are part of Citric Acid Cycle,
Glycolysis/Gluconeogenesis, Oxidative Phosphorylation,
Pentose Phosphate Pathway, and Pyruvate Metabolism.

Notably, imPR90068 accounts for not only all reactions
but also all metabolites present in iAF1260. Nearly 800 new
metabolites are present in imPR90068 that were absent in
imPS1485. These newly added metabolites link parts of
metabolism previously treated before as separate. For
example, (see Fig. 5) the added metabolite AICAR (5-
Amino-1-(5-Phospho-D-ribosyl)imidazole-4-carboxamide)
directly participates in purine meabolism and the histidine
pathway. It is also indirectly linked to thiamine metabolism
(through metabolite AIR), glycine, serine and threonine
metabolism (through glycine) and in alanine, aspartate, and
glutamate metabolism (through glutamate). Thus, the
incorporation of a single additional metabolite in
imPR90068 enables for the first time the ability to fully
describe histidine and purine metabolism as well as account
for interactions between many pathways.

Reduced and EMU Based Representation of imPR90068

Armed with a complete database of all atom mappings
implied by the genome-scale model iAF1260, it is
straightforward to select only the mappings which are
relevant for a given isotope labeling experiment. The
numbers of isotopomers present upon labeling various
atoms present in the model are detailed in Table II. For
example, by labeling only carbons we find that the 932
carbon-containing metabolites (with a total of 20,935
carbon atoms) yield 8.34� 1093 13C isotopomers. We can
tailor the set of considered isotopomers to the specifics of
the system under consideration by removing all reactions/
mappings that are suppressed under the experimental
conditions. For example, under aerobic glucose minimal
media conditions 752 blocked/suppressed reactions can be
removed from the model leaving 793 metabolites containing
33,026 tractable carbon atoms and 3.02� 1062 isotopomers.

An even more compact representation of the isotope
mapping relations can be achieved using the EMU
representation (Antoniewicz et al., 2007a). We have
developed Python scripts that given the atom mapping
matrices of imPR90068, the labeled substrate, and measured
fragments the EMU representation is automatically gener-
ated. The EMU representation of imPR90068 for aerobic
labeled glucose minimal media conditions and using the 31
amino acid fragments listed in Table I of Suthers et al. (2007)
is provided as supplemental material. Table IV highlights the
savings afforded by the EMU representation. The 17,346
carbon isotopomers of imPS1485 are reduced to 1,215 EMU
species and 3,912 mass isotopomers (Suthers et al., 2010).
All 1093 carbon isotopomers in imPR90068 are reduced to
1,068,431 EMU species and 6,066,011 mass isotopomers.
This is still a very large model size that will require
customized implementations using nonlinear optimization

8 Biotechnology and Bioengineering, Vol. xxx, No. xxx, 2011



solvers such as CONOPT (Drud, 1994, 2007) for flux
elucidation. It is important to emphasize that for manyMFA
applications the complete set of reactions/metabolites may
not be needed. We anticipate that users will pro-actively
retain only parts of imPR90068 relevant to the set of
measured fluxes and adopted labeling choices.

Discussion

This paper introduced the computational infrastructure for
tracing all atoms present in every reaction in the iAF1260
metabolic reconstruction of E. coli from reactants to
products to create a genome-scale mapping database.

Figure 5. An example of the expanded scope of the genome-scale isotope mapping model imPR90068. In imPS1485 Ribose-5P production was directly routed to biomass as a
stand-in substitute for histidine. In imPR90068 R5P downstream conversion is linked to other amino acid synthesis pathways.

Table IV. Comparison of the sizes of imPS1485 and imPR90068 isotope mapping models of E. coli.

Isotope mapping model 13C isotopomers

EMU model EMU reduced model

EMU species EMU mass isotopomers EMU species EMU mass isotopomers

Allowing for all uptakes with a transport mechanism

imPR90068 8.3� 1093 1,068,431 6,066,011 621,622 2,787,563

imPS1485 17,346 1,215 3,912 762 2,438

Aerobic glucose minimal growth medium with all blocked reaction removed

imPR90068 3.02� 1062 748,841 3,425,985 473,712 1,978,917

imPS1485 3,584 909 2,911 486 1,538
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This automated procedure can be efficiently leveraged for
genome-scale models of other organisms to create isotope
mapping databases. Common reactions already present in
iAF1260 can be directly culled from the imPR90068
reaction-mappings database thus significantly reducing
the effort needed to construct other organism-specific
mapping models. The potential to improve our under-
standing of flux allocation in different organisms is alluded
by the gap in the size of genome scale versus isotope
mapping models. For example, there exists a 50-fold
difference in the size of the genome-scale reconstruction
of Bacilus subtilis that spans 1,020 reactions (Oh et al., 2007)
and its current isotope mapping model (Dauner et al., 2001)
that accounts for only 25 reactions (all from central
metabolism). It is expected that incorporating reactions into
the mapping model already present in the genome-scale
model could shed light onto metabolic pathway usage
patterns.

The incorporation of more than 1,100 new reactions
involved in central metabolism, amino acid synthesis,
alternate carbon metabolism and other parts of E. coli
metabolism together with the inclusion of more than 800
metabolites compared to the previous largest imPR1485
model (Suthers et al., 2007) integrates metabolic flows
between all pathways (see Fig. 5 for an example). However,
the ability to elucidate fluxes using the full complement of
reactions and metabolites present in genome-scale level
reconstructions comes at the expense of requiring additional
labeling data. While lumped isotope models (Antoniewicz
et al., 2007b; Kim et al., 2008; Suthers et al., 2007) typically
require the analysis of spectra (i.e., NMR or GC/MS) for
only about 20–50 fragments, using the totality of mapped
isotopomers in imPR90068 will likely require significantly
higher numbers of carefully chosen labeled fragments. This
makes even more pertinent the use of methods such as
OptMeas (Chang et al., 2008; Suthers et al., 2010) to
pinpoint minimal measurement sets and compact isotope
representations such as EMU (Antoniewicz et al., 2007a) for
complete flux elucidation. We anticipate that the develop-
ment of systematic reaction step aggregation techniques
(e.g., SLIPs (Quek, 2009)) that avoid any loss of information
will lead to substantial reduction in the size of the problems
that need to be solved for flux elucidation. Even though
imPR90068 tracks the fate of non-carbon atoms through
reactions, we expect that carbon atommapping information
to be at present the most useful in the context of MFA
calculations. This is because significant uncertainties exist in
the description of isotopomer scrambling caused by non-
carbon atoms (e.g., exchange of oxygen atoms with water)
that may erase any labeling information. Such isotopomer
scrambling is also a concern for carbon atoms. Significant
effort was spent during the construction of imPR90068 to
account for chiral and prochiral metabolites, rotationally
symmetric molecules both with a rotational axis or with a
center of inversion, resonance stabilized equivalent atoms
(in total 31% of all reactions) and partial exchange of oxygen
with water (e.g., during aldolase catalyzed reactions)

whenever supporting reaction mechanism information
was available.

Finally, the use of molecular graph representations at a
genome-scale level can be used to study the synthesis
problem in metabolic networks (Hatzimanikatis et al.,
2005). The ability to map atom origins and destinations
without the use of any pre-defined reaction rules based on
EC reaction classification (Tipton and Boyce, 2000) can be
useful in elucidating novel chemistries.
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